Ley de los voltajes de Kirchhoff: Método de Mallas

16
84244
En este post escribiré sobre la Ley de los voltajes de Kirchhoff, una de las principales leyes de la electricidad utilizadas en el análisis de circuitos eléctricos y electrónicos. El uso de esta herramienta forma parte de los cursos de física y análisis de circuitos, tanto a nivel de escuela secundaria como en las universidades orientadas a la enseñanza de la ingeniería.
¿Qué es una malla?

Circuito

En un circuito eléctrico, una malla es un camino cerrado formado por elementos de circuitos. En este caso hay 4 mallas, formadas por 4 caminos cerrados.

Según la Ley de los Voltajes de Kirchhoff, la sumatoria de los voltajes en una malla es igual a cero. Recordemos que cuando una corriente pasa por un elemento de circuito, en este caso una resistencia se produce una diferencia de potencial. La Ley de Ohm establece que la diferencia de potencial (voltaje) en una resistencia es igual a la corriente por la resistividad del elemento, es decir:

V=IR

Si multiplicamos las corrientes de malla por cada resistencia en la malla, al sumar los voltajes el total debe ser cero. Para asumir las corrientes de malla, necesitamos tener en cuenta que en un circuito eléctrico la corriente sale del positivo de la fuente y entra por el negativo de la misma.

Si no hay una fuente de voltaje o de corriente en una malla entonces asumimos que la corriente fluye en un sentido horario. Se podría asumir en el sentido anti horario, lo cual no interesa mucho ya que si se escoge un sentido incorrecto la corriente que nos resultará al hacer nuestros cálculos tendrá signo negativo. Esto lo podremos apreciar al final cuando obtengamos nuestra respuesta.

Las corrientes las debemos representar en nuestro diagrama se la siguiente manera:

Circuito

Vemos que en la malla 1 se asume que la corriente va en sentido horario ya que sale del positivo de la fuente. En las mallas 2 y 3 no hay fuente, así que se asume libremente (preferiblemente en sentido horario). En la malla 4 la corriente va en sentido anti horario por salir del positivo de la fuente de voltaje.

Luego de escoger el sentido de las corrientes procedemos a colocarle signos de polaridad a las resistencias por cada malla. Las resistencias no poseen polaridad pero para facilitar la resolución del problema le colocaremos signos. Una vez más debemos tomar en cuenta el sentido de la corriente: para todas las resistencias la terminal donde entra la corriente llevará un signo positivo. Donde sale la corriente de la resistencia se coloca un signo negativo.Circuito

Ahora que hemos colocado los signos, se procede a establecer las ecuaciones para cada malla. Con la ayuda de los signos que hemos colocado se nos hace muy fácil hacer esto. Veamos.

Malla 1

En la malla 1 está pasando la corriente 1, por lo que es necesario multiplicar todas las resistencias por I1 para obtener los voltajes en las mismas. Se sumarán todos los voltajes en todas las resistencias más el voltaje de la fuente y la ecuación se igualará a cero.Ley de los voltajes de KirchhoffNótese que por la resistencia R2 de 220 Ohm hay dos corrientes pasando, la corriente de la malla uno y la corriente de la malla 2.

CircuitoPara esto se han colocado los signos sobre la resistencia. Como la corriente entra por el positivo en la malla 1, se toma el voltaje de la resistencia por efecto de I1 como positivo. En el mismo punto hay un signo negativo (en verde) en la malla 2 que indica que se debe restar el voltaje de la resistencia por efecto de I2.

Circuito

Al la ecuación que nos resulta es la siguiente:

Circuito

Si reducimos la ecuación a su mínima expresión obtendremos la ecuación de voltajes de Kirchhoff para la Malla 1.

Circuito

Ahora procedemos a hacer lo mismo para las mallas 2, 3 y 4.

Malla 2

Ley de los voltajes de Kirchhoff

Circuito

Reduciendo a su mínima expresión:

Circuito

Malla 3

Circuito

Como podemos observar, en la resistencia 6 los signos son positivo y positivo (++) por lo que se suma el voltaje en la resistencia provocado por I3 y el provocado por I4.

Circuito

Al final la ecuación reducida es la siguiente:

Circuito

Malla 4

Circuito

Circuito

Reduciendo la ecuación a su más mínima expresión:

Circuito

Resolviendo el sistema de ecuaciones

Una vez hayamos establecido las ecuaciones para cada malla tendremos un sistema de ecuaciones nxn donde n es el número de mallas.

En este caso tenemos un sistema 4×4, es decir 4 ecuaciones con 4 incógnitas.

Circuito Circuito Circuito Circuito

Esto nos permite utilizar cualquier método conocido para buscar los valores de las incógnitas. Puede ser por reducción, sustitución, determinantes, etc. Yo en lo personal utilizo matrices, específicamente el método de Gauss Jordan.

Para ello es necesario llevar todo el sistema a una matriz, donde en la primera columna irán los valores de I1, en la segunda, tercera y cuarta irán I2, I3 e I4 respectivamente. Por último el término libre, en este caso los voltajes irán en la última columna.

Circuito

Ahora explicaré como resolver este sistema utilizando tres opciones diferentes, el Microsoft Mathematics, Matlab y Excel.

Microsoft Mathematics

El Mathematics es una excelente herramienta gratuita que proporciona Microsoft para nosotros los estudiantes. Se puede descargar gratuitamente desde la siguiente dirección:

http://www.microsoft.com/es-es/download/details.aspx?id=15702

La interfaz es sencilla y fácil de usar.

Circuito

Ahora necesitamos insertar una matriz de n filas por n+1 columnas donde n es el número de mallas. En este caso sería una matriz de 4×5.

Circuito Circuito

Circuito

Ahora se introducen los datos:

Circuito

Ahora se utiliza la opción reducir que nos aparece en la ventana.

Circuito

Nos aparecen los resultados en fracción y en decimal. Los números que se encuentran en la matriz reducida en la columna de la derecha serán los valores de las corrientes.

Circuito

Será I1 20.3 mili amperios; I2 es 3.6 mili amperios; I3 es 5.06 mili amperios; I4 es 24.5 mili amperios.

El signo de I3 por ser negativo indica que a la hora de tomar el sentido de la corriente lo hicimos mal: I3 no va en sentido horario sino en sentido anti horario. El procedimiento está perfectamente correcto, solo tomamos mal el sentido. Al final el signo nos indica para dónde realmente va la corriente.

Ahora procedemos a comprobar si los resultados obtenidos son correctos. Veamos el simulador.

Circuito

Los amperímetros en cada malla indican que el resultado obtenido en nuestros cálculos es correcto. En el simulador existen unas pequeñas pérdidas pero son insignificantes ya que estamos tratando con corrientes muy pequeñas.

Si utilizamos MatLab, el resultado obtenido debe ser similar.

Matlab

En Matlab declaramos la matriz con las ecuaciones de malla.

Circuito Circuito

Circuito

Ahora simplemente se aplica el comanto rref() a la matriz que declaramos:

rref(Matrix)

Circuito

Vemos que el resultado obtenido es muy similar al que nos entregó Microsoft Mathematics.

Microsoft Excel

Mi estimado amigo Secundino Villarreal, Ingeniero Electromecánico y docente de física en la Universidad Tecnológica de Panamá lanzó el sitio web excelparaingenieria.com en donde constantemente está publicando plantillas diseñadas en Excel. Hemos utilizado la plantilla Gauss Jordan: Ecuaciones Simultáneas 4 x 4 para resolver el sistema de ecuaciones de este ejemplo. La plantilla se encuentra disponible de forma gratuita en la web del autor. Cuando la descargamos veremos algo  como esto:

excel para ingenieria

Un poco más abajo encontraremos un cuadro donde ingresamos los valores de nuestras ecuaciones. La plantilla irá calculando automáticamente las respuestas del problema al hacer la reducción de Gauss-Jordan.

excel para ingenieria

 

Como podemos observar, los resultados son iguales a aquellos obtenidos con Microsoft Mathematics y Matlab. El usuario puede escoger la forma como desea que los datos queden visualizados, ya sea en notación científica, fracciones, decimales, etc. Como ya dijimos, la plantilla la podemos descargar desde la web del autor.

Usted puede utilizar cualquier calculadora que pueda resolver sistemas de ecuaciones lineales para resolver el sistema. El método que se use la verdad no importa. Al final lo que determina si el problema está bien o mal es si se hace la sumatoria de los voltajes de forma correcta.

En el siguiente video muestro un resumen del contenido de este post, ahora utilizando una calculadora Texas Instruments Nspire CX CAS.

Problemas resueltos de Leyes de Kirchhoff

En Panama Hitek hemos creado una sección especial para compartir problemas resueltos de teoría de circuitos eléctricos. Los problemas resueltos poseen diferentes niveles de dificultad y han sido diseñados para evaluar conceptos en estudiantes de cursos de ingeniería eléctrica y disciplinas afines.

Eso es todo por ahora. Esperamos que la información presentada sea de utilidad para ustedes. Saludos.

  • Juan Gutierrez

    gracias por la información

  • Antony García González

    Excelente

  • Eduardo Guerrero

    Excelente aporte, muy bien explicado. Gracias.

    • Antony García González

      Gracias

  • David Gonzalez

    gracias muchas gracias. ya saque mis dudas en cuanto a la matriz.

  • victor eduardo chaparro angari

    me sirvio mucho gracias. como puedo hallar la resistencias total, y la potencia total??

  • Pingback: Referencias bibliograficas « UNIVERSIDAD AUTONOMA DE TLAXCALA()

  • Ubaldo Gutiérrez Félix

    Excelente información y muy buena explicación.
    Saludos.

    • Antony García González

      Gracias

  • orencio Ramirez marquez

    creo q hay un pequeño error cuando ingresas los datos de la ultima malla pones 540 y es 510 si no me equivoco :D, saludos

  • xavier torres zamudio

    Excelente explicación, aclaro uno de las dudas que tenia, pero surgieron otras más, por ejemplo al momento que obtengo la corriente para las resistencias y deseo comprobar si los valores estas correctos para las ecuaciones no me cuadran los resultados, incluso si coloco el valor de 12 V como -12V ya que es una corriente contraria a los 10V. Si pudieras aclararlo te lo agradeceria infinitamente

    • PanamaHitek

      Xavier, quizás hay que ser más explícito en lo que deseas que te responda. Cuando obtienes cada corriente de malla y la multiplicas por un valor de resistencia, estas encontrando la caída de voltaje que se genera en esa resistencia. Por ejemplo, para la resistencia de 220, pasan dos corrientes distintas así que el voltaje de ella será la resta de I1 e I2 por su valor de resistencia.

      Para comprobar que este valor en efecto es el correcto, el voltaje que hay en la resistencia de 310 debe darte la diferencia de 10 – V en 220. 😀

      Saludos,

    • Antony García González

      Podrúas ser un poco más específico por favor? Que es lo que no cuadra?

  • Hector Vergara

    ¿Cuánto tiempo te tomó hacer el paper y que programas usas para hacer los circuitos demostrativos?

    • Uso la combinación perfecta:
      Illustrator y Photoshop hacen los gráficos. Los circuitos los hago en Livewire (a veces en Fritzing o en Isis Proteus).
      Las ecuaciones las hago en Word.
      Uso Paint para capturas de pantalla.
      Microsoft Mathematics y Matlab para resolver las matrices.

      Cuando hago videos el audio lo retoco en Adobe Audition y el video lo compilo en Adobe After Effects. La grabación en pantalla es desde Camtasia.

      Un post como este me toma entre 90 y 120 minutos. Si le agrego video me toma un poco más

  • interezante!!